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Abstract 

In the simple one-dimensional random walk a particle moves along 

a line in unit steps, either forward or backward.  Consider the motion 

of the particle if the step lengths are not constant, but rather vari- 

ables that depend on the position of the particle at each step.  Such 

a generalization of the random walk is the subject of these studies. 

The motion of the particle is studied in some detail.  If  x is 

the position of the particle before a move, the particle has two alter- 

natives; it may move to C. + C x or  C x where  C , C , and C  are 

constants subject to certain constraints.  Several theorems are proved 

which specify just what points are accessible to the particle in a 

finite number of steps as well as for the limiting case of infinite 

steps. 

A fixed probability law which makes the walk random is assumed, 

i.e. the two alternatives described above are assigned probabilities 

p and q and p + q = 1.  Then the distribution function for the 

particle position after a given number of steps is determined.  Finally 

there is derived a body of results on the moments.  These latter 

results are found without knowledge of the distribution functions. 



. 
The random walk has served as a model or analogue for a wide va- 

riety of problems in fields as unrelated as colloid chemistry and 

gambling.  The problem of random flights was considered by K. Pearson 

around the turn of the century.  In that problem the distribution of 

position of a particle after it had suffered a sequence of n dis- 

placements was sought.  This is the same as seeking the distribution 

of the sura of  n  random vectors, each vector being characterized by a 

probability distribution.  Earlier Lord Rayleigh had studied the prob- 

lem of finding the distribution of the composition of  n periodic 

vibrations of unit amplitude and random phases.  later Smoluchowski 

and Einstein found the distribution of particles in Brownian notion. 

In 1923> Wiener discussed this stochastic process rigorously. 

The salient feature of each of these problems is the distribution of a 

sum of random variables, each random variable being characterized by 

an assigned distribution. 

Since sums of random variables play a dominant role in such analyses, 

it is natural to expand on the applications of Lhe methods and include 

all problems that involve additive quantities such as energy, momentum, 

length, financial gain, population, etc. 

All such problems may be thought of as elaborations (albeit com- 

plicated) on the simplest one-dimensional random walk, which will be 

described now. 

A particle moves along a straight line in steps at times  t = 1,2,5 » 

each step being of unit length and taken either forward or backward with 
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equal probability, 1/2. After n steps the particle could be at any 

of the points, -n, -n+1, ..., -1,0, +1, ..., n-1, n. The 

probability that the particle is at position m after n steps is 

the familiar Bernoulli distribution. This formulation is the model 

for one of the simplest of gambling problems, viz. that of the gambler 

who wins or loses one unit of money at each play of the game and he 

wins and loses with the same probability, 1/2. 

The first simple generalization of the one-dimensional random 

walk results when the probability of a forward step (winning) is not 

the same as the probability of a backward step (losing), but rather 

p and q  respectively.  Further generalizations result when problems 

in higher dimensions are considered and problems still more complicated 

result when reflecting and absorbing barriers are introduced.  Again, 

appealing to the gambler analogue, an  absorbing barrier at the origin 

represents the gambler's ruin point and problems involving probability 

of ruin and duration of the game (number of steps or time till ruin or 

absorption at a barrier) become interesting and important.  These 

problems have now become 'classical' and are well documented. 

One property tacitly implied in all of the work discussed above 

is independence.  The 'step lengths' have been taken to be statistically 

independent and in most cases identically distributed.  The generali- 

zation of the random walk which is discussed here imposes a special 

kind of dependence among the random variables of the process.  Specifi- 

cally, the length of a forward step is made to be different from that 

of a backward step and these step lengths depend on the position of 
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the particle before the step ±6 taken.  The probabilities of moving 

forward or backward are constants, p and q(= 1 - p) . 

These studies are presented in three parts.  The first part, under 

this cover, treats the problem of finding the distribution function of 

the particle position after u steps and the limiting case for large n. 

Moments for particle position are derived exactly, both for finite 

numbers of steps and for the limiting case. 

Part two is a study of the absorption time or the number of steps 

needed for a particle to exceed a pre-assigned level. That number or 

time is a random variable and its expected value is studied in that 

paper. 

In part three a number of applications are presented and discussed. 

Some of these applications provided the motivation for these studies 

and the formulation of these phenomena as random walks is shown in 

detail. 

The author acknowledges with thanks tho instructive discussions 

he has had with L. Takäcs, S. Karlin, J. Gani, R. Pyke, A. Marshall, 

and J. Tysver on these problems. 



I.  Distribution Functions and Moments. 

1.  Introduction- 

Consider the following random walk; 

A particle undergoes excursions along the x-axis in such a way 

that the position after  n  steps depends on its postion after n -1 

steps.  The particle at each position is subject to one of two impulses 

and its motion is governed by a fixed probability law.  Explicitly, 

C  + C x  ,  with probability p 

x = 
n 

(1) 

C,x , 
5 n-1 

with probability  q(= 1 - p), 

where  x.  is the particle position after  j  steps and C. , C , and C, 

are constants subject to a set of constraints. 

Before proceeding to the analyses of this random walk that lead 

to equations for distribution functions and the moments, it seems 

relevant to discuss the nature of the motion itself. 

2.  Motion of a particle in the random walk. 

The admissible values that the constants,  C. , C_, and C  may 
id 5 

assume must first be specified.  Later on certain more stringent con- 

straints will be treated but for now the following inequalities will 

suffice: 

Cl>0 

0 < c2 < 1 

0 < Cv < 1 5 

(2) 

Now consider the possible positions a particle may occupy after n 

steps, having started at  x, when 



^1 
Henceforth, the closed interval,  [0,T —-]  will be denoted by I. 

1 " C2 

Since there are two alternatives at each step, there are 2  pos- 

sible positions the particle may occupy after n steps.  For example, 

after one step, two steps, etc. the particle may be at 

C + C x or 

C x 

^(1 + C2) + C2x, 

(^ + C2C x, 

CnC^ + C^C-,x,  or 15   d  y 

(after one step), 

(3) 

(after two steps), 

These points are determined merely by repeated application of equation (1) 

S. Karlin,  in private correspondence, has pointed out that all 

such positions may be represented by a single expression.  Consider the 

sequence a.  = {a, ,a ,a ,..a }  where  a, = 0  or 1.  There are 2 
X      d       j Tl K 

such sequences of length n and they generate the particle positions 

as follows.  If  t(a)  is the particle position corresponding to the 

sequence, a, 

j-l     j-l 
E a. j-l-E a. 

n 

t(a) = C, > a C    C        + C0   C-.    x« 

a. n-S a. 
L = l 

3 
(4) 

j=i 

Note that in the limit, i.e. for infinite sequences, the dependence 

on the initial position vanishes.  Furthermore, for x = 0, all sequences 



may be considered infinite with ali terms zero after the nth term for 

the n - length finite sequences? {a..,a f..a ] becomes (a.^a^.. .a ,0,Q...}. 

Also observe that if a particle's Initial position is in the interval, I, 

it can never leave that interval.  In particular, an infinite number 

of forward steps  (x -• C-. + G x)  and an infinite number of backward 

steps  (x -' C.x)  yield terminal positions 

n  i C 
lim  (C, ^ C, + c"+ x) = —r-    and 

n - OD  
1i=0 2   "      1 " C2 (5) 

lim c"x = 0 
n -■ CD 

respectively. 

Thus far the discussion of the motion has been concerned with the 

points that may be reached from an initial position in a given number 

of steps.  The points attainable in n  steps from an initial position, 

x, are given by ('() and the 2       n - length sequences of zeros and ones,  a. 

Just as pertinent to these analyses is the question of whether or not 

a given point in the interval, I, can be reached from any other point 

in the interval, with no restriction on the number of steps that it may 

take.  This is the same as asking if one can start at  x and arrive 

at  x',  where  x and  x'  are arbitrary.  If  x'  cannot be reached 

from  x  in a finite number of steps, how close one can come to  x in 

a finite number of steps is also interesting. 

To consider the above problems it is necessary to categorize the 

constraints.  Those constraints given by (2) still hold but the relation- 

ship between C  and C  must be considered.  Two distinct possibilities 
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yield slightly diffeient results.  Those two cases are given by 

C + C, > 1 and 

C-, + G < 1 . 

(6) 

It is also expedient tu recast the description of the particle 

motion in the language of operators.  Let T , T , T  , and T~  be 

operators on points of the interval, I, defined by 

T x = C  + C x 

T2x = C x 

-1   X " Cl 
Tix= -cj- 

T^x = ^-  . 
^ X  C 

(7) 

,-1 
Of course, the inverse operators, T-.   and T- , seem superfluous 

to the description of the motion since the random walk model described 
x-C. 

1 x 
here does not admit of steps that carry x  to —— or x to ^—. 

C2 c5 
Moreover, not all of the points of the interval, I, are in the domains 

-1       -2 
of T.   and T_  if it is required that the ranges of these operators 

both be subsets of  I.  The usefulness of  T.   and T_   will be made 

clear in the sequel and their inclusion among definitions here is 

merely for completeness. 

Let the operator T  be a generic operator indicating either 

T  or T .  Similarly let T~  mean either T~   or T~ .  Finally, 

T  means some sequence of operations using T 's  and T 's and T 

means some sequence of operations using T  's and T  's. 
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Now note  the following property of sequences of  operations on 

points of     I.     For fill    x    and    x'      in    I, 

C, 
Tx-Tx'     <c     x-x'      <c (8) 

i - c. 

where  c = maximum (C0,C ).  The constraints given by (2) guarantee 
<-     J 

that the difference may be made small.  The inequality (8) follows 

Immediately by direct calculation» 

lTmx - TV I   =   |cVrk(x -  x' )|   =  C^-k|x -  x' |   < 0^^—%- 
d  5 ^9 -c51-02 

for some k(0 < k < m)  depending on the sequence of operations.  In fact, 

k  is just the number of times T  appears in the sequence T  and, 

of course,  m - k is the number of times T  appears in T . 

Returning to the discussion of the approach of a point from another 

point, the following theorems show that if  x is an initial point, one 

can come arbitrarily close to  x',a  given point in a subset of  I 

(the subset is determined by the constraints (6) and x'  can be reached 

in the limit •) . 

Theorem 1.  C, > 0, 0 < C^,C, < 1, C_ + C. > 1. 
1 ^5      c£   5 - 

V = ci + v- 
T-X = Cvx. 

Tx = T x  or  T x. 

(9) 

I, x' e I, I = [0^ ~ ]. 

Given an ß > 0, there exists an M(e)  and sequences of operations, T, 

such that if m > M, 

|Tmx - x* I < e 
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Proof: Choose M so that 

M  * " C2 
C  <  rL  (c = maximum (C ,C )) 

C C 
if e < ^—~  or M = 0 if e > 

1 - C 
2 

- 1 - C, 

Either T. x' c I or T0 x' e I or both.  Choose an inverse 

operator  (T-   or T  )  so that T  x' e I.  Next choose a second 

inverse operator so that  T T  x' E I, and so on, until finally, 

T-V z   I. 

From (9) if m > M, 

|T  x  -  x'|   =   |T  x   -  T T     x'|   <  c   |x  - T     x1 

crnC1 c\ do) 

Therefore, if  x'  cannot be reached in a finite number of steps, 

it may always be reached as a limit point of a T x sequence. 

The sequence of transformations used above need some closer 

scrutiny, since the results of Theorem 1 may otherwise be misleading. 

First note that the order of operations in the  T  sequence in (10) 

is the reverse of that in the T   sequence.  Since neither T. and 

Tp  nor T1   and T    commute, the order of oparations must be chosen 

this way.  Then, if  E  is the identity transformation, i.e.  Ex = x, 

 T1T.T.T"1TT1Tr  ... x = Ex = x . (11) 
k 3 i i J k 

Now (10) implies some sort of convergence of sequences of operators, 

T ,T   , etc. and convergence depends on the definition of the sequences. 

The distinction In obvious if the following illustrations are considered. 
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Let superscripts indicate operator labels and let  (T)   indicate m 

applications of T's.  Then consider the following sequence. 

T1x = (T)x 

TVX = 
T5T^T1x 

(T)2x 

(T)5x (12) 

TV"-
1
....^ = (T)mx. 

The limit of  (T) x always yields a point in the interval but 

one more application of either  T  or T   removes a particle from 

that point.  This means that one never reaches a point  x0  such that 0 

Vo = X0 and T2X0 
converge. 

So the aequenceo defined by (12) do not 

Now consider the kind of sequences used in Theorem 1. 

T-'-x -- (T)x 

12       ? 
T T x = (T) x 

(15) 

TVT
5
 ...Tm-1Tmx = (T)nix 

There it was shown that for every point, x', in the interval, I, 

there exists a sequence of operations on an arbitrary starting point, 

whose limit  is  x'.  In fact, the method for constructing that sequence 

yields the arrangement (15)•  That every sequence chosen in (he manner 

that  T  appears in Theorem 1 converges is demonstrated in 

Theorem 2.  Every sequence (13) converges uniformly in  x. 
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Proof:  It suffices to show that (15) is a Cuuchy sequence. 

If m > n, (9) gives 

|Tmx - Tnx| = |TV-nx - Tnx| < cn|Tm-nx - x| 

C. (Ik) 
^    n   1 ^ c rr^ 

where c again is maxCC^C,) 

and 

lim  |Tmx - Tnx| = 0 [uniformly], 
m -• CD 

n -* CD 

(15) 

The other case considered is characterized by the constraint, 

C + C < 1.  Here the motion is not so simple and not all the points 

in the interval, I, are accessible points.  Note that applying T 

to the interval, I (the transformations may now be thought of as mapping 

sets into sets) and T  to the interval, yields 

V0'rrV = ^I'nV 
c       c c (l6) 

The union of these sets does not cover the interval.  The open 
C1C5 interval,  (- fr~   i C )  is not covered.  The union of two applications 

1 " C2   1 C^^C 
of T.  and T_.  on  I  leaves uncovered the intervals, (^ i—, C ), 
Id -L — (jp -L 

C C^ CO 
0 ,        ^   ,  C-C,.),     and    0,(1  +  •-,       i   ,   CAl  + C_)).     Further applications 

X — O-   L   3 1      X - U     X       d 

of T1  and T!       l(;ave additional intervals uncovered in the same way 

that a Cantor set is constructed.  In fact, if  C. = — , C_ = —, and 

C- = -r, this succession of steps provides a method for constructing the 
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Cantor ternary set.  Another way of showing this is by noting the con- 

straints on the inverse operators used in Theorem 1.  The only points, 

x', for which either T x'  or Tp x'  ia admiysible as a first backward 

step are in the set 

C,C 

CLC 
15 Having removed the interval (- s~, C ), the only points eligible 

2 
to be transformed backward another step are in 

,2 C,C c,c c^c. 
[0'rT^^u fcicrrT^lu rci'ci(1 + rH;^0 ^I

(1
 

+ V' rrc^- 

Continuing in this way, it is clear that the only points from which 

one may start in a sequence of backward steps belong to a Cantor set,A- . 

The companion theorem to Theorem 1, is then, 

Theorem J,.     C, > 0, 0 < C-,C, < 1, C_ + C, < 1 
1 2  >      2} 

x' EAL,   the Cantor set constructed by the method described 

above. 

For  all x  in  I, one can come arbiträr i.ly close to  x'  in a 

finite number of steps and can always reach  x'  in an infinite number 

of steps. 

Proof:  With the suitable restrictions described in the text, the proof 

follows immediately from Theorem l. 

Thus, when C  + C  < 1  and  x1  is in the open interval, I -X^, 

there is no sequence of operations, finite or infinite, that will ter- 

minate at  x'  except the trivial eise, i.e., x = x'  and the sequence 

of operations is of zero length. 
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Observe that x' can be reached from x for all x' in I eo 

the convergence to x' is uniform in x (with the tacit assumption 

that x'  is in the proper interval). 

Finally, the next two theorems show how points in the interval, I, 

may be represented.  The connection between the behavior of a particle 

suffering impulses given by the transformationrj, T.  and T_ , and the 

representation of terminal points is the main result. Theorems 1, 2, 

and ? and the representation (4) aro clooely related and this relation 

is made obvious by these two theorems.  Without loss of generality, 

the initial point, x. is taken to be zero. 

Theorem k.    C, > 0, O < C.C- < 1, C„ + C, > 1. 

C, 
x« e I = [0, rT

;V:]- 

There  exists a  sequence     a = |i,a   ,...], where     a,    =  0 or  1,   such  that 

n-1 n-1 
OD 2 a.   n-l-S a. 
Z.   ,   i •   -,   1 

aC^1     C.     i=1 

n 2 5 

(17) 

n=l 

If x'  is one of the points that can be reached from zero in a 

finite number of steps, the result is obvious.  Suppose x1  cannot be 

reached from zero in a finite number of steps.  Theorem 1 asserts that 

there exists a sequence of transformations such that 

lim Tm0 = x* . 
m -• <D 

(18) 
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It is clear that the tranaforrnatlons, T  and 1 , correspond to 

one and zero respectively in the sequence a.  For example, 

T^O =  C1 a = {1,0,0...} 

TO =0 a = [0,0,0...] 

T^.O = C1(l + C^)      a = {1,1,0...} 

T2Tl0 = C5Cl a = f0.1.0---} (19) 

T-,!^^ = G1(l + C2 + C^)  a = fl,1,1,0,0...} 

Ti!T1T10 = CjC (1 + C2)    a = [o,l ,1,0,0... ] 

etc. 

Therefore, any point in  I  can be represented by (17) if the sequence, 

a, is made to correspond to the infinite sequence of transformations that 

yield (18). 

Ongspocial case merits consideration, viz. when C_ + G  = 1. 

When this situation obtains, the sequence of transformations whose 

limit is  x'  is unique (except for the fact that T T T T ... is 

equivalent to T T T T ... just as 0.011... is equivalent to 0.100 ... 

in the binary expansion of a number in the uniL interval).  When 

C  + C  = 1  each backward step in Theorem 1 is determined uniquely 

since T-. x'  and T  x'  can never be in  I  simult meously.  For 
1       ^  ci ■ 

example, if C.< x' < ■: TT
-
 the first inverse transformation must be 

_1 *- 
T-. .  Each step is thus determined uniquely.  This also specifies the 

sequence, a, uniquely.  If the first inverse transformation is T. , 

a, = 1 } if the tr nsformation is T  , a  =0.  Then ap, a , etc. 

are ''hoson the .'vimo way and (17) pelves a representation for  x'  that 

is un l.que.  An obvious special case arises when 0,= C^ = C  = 1/2. 
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Then (17) given the binary expansion for numbers in the unit interval■ 

A number written in binary form is just the sequence, a ) 

i.e., x1 = O.a.a a . If C, + C, = 1 and C- + C_ > 1, (17) 

gives another way of representing a number in the unit interval using 

a sequence of only zeros and onos, although the repreuentation may 

not be unique. 

Theorem 5-  C, > 0, 0 < C_,C, < 1, C_ + C,, < 1. 
i <:  2       <i    3 

X'  E i -K. 

There exists a sequence  a = [a ,a_,...}, where  a. = 0 or 1, 

such that  x'  is represented by (17)■ 

Proof;  The proof is the same as that for Theorem 4. 

These convergence theorems and representation theorems provide 

some insight into the nature of the motion of a particle subject to 

the impulses described in (1). 
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3«  Distribution Functions. 

Recall that the motion of a particle in the interval, [0,^ 7T~li 
2 

is governed by the fixed probability law described by (1).  The dis- 

tribution function characterizing the particle position after each 

step is, then, determined by that law.  Let F (t)  be the conditional 

probability distribution of the particle position after n steps. 

Fn(t) = Pr{xn< t|x0 = x0} 

F (t) = 1,  t > ^ 
n —1-0, 

F (t) = 0,  t < 0. 
n — 

(20) 
n = 0, 1, 2, 

The conditioning on  xn has  been here suppressed since it will 

always be apparent when it applies. 

To derive expressions for F , note that if  x is an arbitrary 

point in  I(= [0, pr-"!), a particle can reach  x at the  nth  step 
1 ~ C2 x - C1 

in one of two ways.  It can have been at —„  after  n - 1  steps 
C2 

and advanced to  x with probability, p, or it can have been at TT
- 

C5 
after n - 1 steps and moved to x with probability, q. Therefore, 

the distribution functions,  F  and F n  are related by 
x - C1     

n       rl-1 

(21) 

The arguments of the probability measures on the right side of 
x - C1 

this expression are the sets, [0, — )  and  [0, -=  ), and they are c2 c5 
ordered by the inclusion relation 

x - C. 
Co, -c-2)c [0, f ). 

2       C5 

This may seem to make (21)  in uitively unappealing since the 

probability that the particle is at a point less than —  includes the 
x - c  c5 

probability that it is at a point less than — .  But the arguments 
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used above also show that the differential probability that a particle 

(22) 

(25) 

is at x after n steps is 

^n^ = Pdr„-1(L5~;) ^n-l^' 

Then (21) follows immediately by 
xx x 

J dF (t) = p J  dF  ,( r     1) + q J  dK  .(^ ) 
0  n     ^ 0   n-1  C? 0   n-1 C^ 

For small n, it is easy to determine F (x).  Repeated 

application of (21) yields 
x - C 

F (x) = pF  . i—p -)   + qF  , (£ ) , n       n-1   C^      n n-1 C 

,    x - G (1 + C.,) x - Ci 
= P'Fn-2( b ^ + ^Fn-2(-C^r) 

C2 2 5 

x — C C 

n-2  C
2
C5 n-2v-2 

C5 

= P F0(- 

X - C1 
1 - C2 

1 1 - C^ 
•) + 

(2*+) 

0 _n * 
2 "3 

Every term on the right side of (2'0 involves  F_(*)  and since 

F0(x) =0    x < x0 

F0(x) =1     x > Xy, 

all one needs to do to determine  F (x)  is check the arguments of the 

individual terms and subsLitue zero or one according as the argument is 

less than or greater than  xn, the conditioning initial point.  Some 

simplification obtains if the terms rire examined after each application 
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of (21) since, by (20) 

Fk(x) = 1 

= 0 

x > r; 

x < 0. 

0 < k < n - 1. 

Now consider the   limiting distribution, that is, the distribution 

after an infinite number of steps.  As in the discussion of the motion 

of the particle (Section 2), the constraints imposed by the values of 

C., C ,  and C   become important.  Furthermore, the relationships 

among p, q, C^,  and C   en ter the discussion. 

If C  + C  < 1, the limiting distribution may be found by examining 

the representation of a point given by Theorems 5 and 3 and noting that 

the transformation T   corresponds to a move that has probability, p, 

of happening and T,,  corresponds to a move that has probability, q. 
c. 

Theorem 5 shows that if  x c; AL,  the Cantor set constructed in Section 2, 

x may be represented by equation (17).  For  C  + C < 1, x is 

monotonic in a. 

al > a2 
x1 > x2. 

By a > a is meant th t if the a'u are thought of as binary 

numbers, the relation between those numbers determines the ordering 

of the  a's.  For example, 

[1,0,0,...} > [0,1,0,0,...} > [0,0,1,0,0,...}. 

Notice that this monotonicity obtains only when  C2 + C < 1, 

for only then are the representations unique (see Section 2). 
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Now, when  x GAT, it follows that 

n-1     n-1 
03    E a. n-\-X  a. 

x = C, ) a C1;-       CI     i_       and 

n=l 

n-1     n-1 
00   E a, n-l-S a 

(25) 

^(x) = q ^ a
nP       q 

n=l 

If  x i^^, it is necessary to determine which interval contains 

x.  x must necessarily be a member of one of the intervals removed in 

constructing ^-.  If  x e (a,b), then, because of right continuity 

and monotonicity of F, surely 

F(x) = r(a) (26) 

and a eft,   so  F(a)  is found by (25)-  Finding the interval to which 

x belongs involves the inverse operator procedure outlined in Section 2. 

If neither T, x nor T  x exists, 

ClS F(x) = F(T—-2-). 

If either T  x or T^ x  exists, one tries the next inverse 

operation.  Say T~ x exists, but neither T, T x nor T T  x 

exists.  Then by solving 

x' - C, 

for  x' , 

^i 
C^C 

3 

cc. 
F(x) = F(x') = F(C1(1 + T—^-)). 1   1 - c2 
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Continuing in this way, it is always possible to find the interval 

to which  x belon^K and since F is monotone it is surely 

constant in that interval and equal Lo F(a)  where a is the left end 

point of the interval. 

Next, consider the limiLinf; distribution when Cp + C 5 
1.  In 

this case, every  x  in  [0,-; —-1  may be expressed by (17) and this 
1 ' C2 

representation is unique.  For all  x, F(x)  is ßiven by (25).  However, 

some special cases are interesting and admit of expressions simpler 

than (25)• 

If  p = C  and  q = C , observe from (25) that 
C   5 

F(x) = ^ x = ^x. (27) 

If  p < C ,q > C ,  and 0+0=1, F(x)  becomes concave and, 
2      5 <~ ) 

similarly, if  p > C_, q < 0 ,  and 0  +0  = 1, F(x) becomes convex. 

Figure 1 illustrates three cases: 

Curve A 

Curve B 

Curve C 

P = c2i q = C3 

p < C0, q > C 

p > 02, q < C5 
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For purposes of application, F(x)  may be approximated by noting 

the agreement between (25) and: 

C, 
'(x) = (c1 x)ß 0 < x < ^  , ß = Yn 

In q 
C, 

C, 
(1 - ^ x)0 ^ _ . s 

(28) 

For 

C  < x < J:   ö _ ili_£ ■ ■ x ^ -  ' 0 - In C, 

ß x = C, ,C1C_,C.C,,...C1C;.,..., F(x) = (r-' x)H agrees exactly with (25) 
1  -L 2  1 5    i5 ^T 

and for x = C1, ^(1 - Cp, -^i  1 -  C|),...^(l - C^),..., 

C 
F(x) = 1 - (1 - TT2 x)  agrees with (25). 

Cl 

Finally, a convenient check is available for all of the expressions 

for F.  The equation for the limiting distribution which corresponds 

to (21) is 
* - cn 

(29) 
x - C 

F(x) = pF( -    -L) + qF(^ ), 
2        "5 

again with the obvious conditions, 

F(x) = 0 

= 1 

x < 0 

x > 
1 - C. 

Only those distributions for which C  + C  = 1 are considered. 

When C  + C  < 1, the same arguments apply and that case lends nothing 

to the discussion. 

Suppose  C  + C  = 1.  -Then if  x < C , the first element of the 

sequence, a, corresponding to  x is a zero.  If  x > C, , the first 

element is a one.  When  x = C , 

;1 = U,0,0,...j = 10,1,1,...], 
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Now consider   (25).     If  x < C   , 

x =   [0,a2,a   ,...] 

Q     =   la   »a   ,.. . J 

F(x)   =   qF(^   ) 
5 

a^  2-a_ a-.+a,   5-(a  +a..) 
_/   v / 22 2T 2^ 
F(x)   =   q(a2q   +  a   p     q +  »;,? ^ + 

a     l-a. 
q   (ap   + a  p     q + a.p 

a.+a,  2-(a^+a_) 
2     5„ ^     ? 

(50) 

= qF(^ ) 

If     x > C^^, 

x  =   t.l,a   ,a   , . ..] 

x  - C 
"~  =   (.a,a,...J 

2'    5 

x  - C 
F(x)   =   pF(—p; )   +  q 

C2 
1+a     2-(l+a   ) 

F(x)   =   q(l   +  a?p   +  a   p q 

a?  2-(l+a   ) 
=   pq(a     +  a   p   ~q +   ... 

x  - C 
=   pF(—^ )    +   q- 

(31) 

1+a  +a     5-(l+a->
+az) 

+  a^p 

+ q 

2     3 2,"3 ...) 

Wlien     p -■ C       and     q  =  C   ,   (27)   gives 
2C 5 

F(x)   =  TJ-X. 

The n,   if     x < C   ,   (29)   becomes 

F(x)   =  qF(^   ), 
;   C3 

F(x)   =^x   =   q^    =   qFC^-) 

(32) 
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For x > C , 

F(x) = pF(- 
x - C, 

-) + q. 

C x    C x   C C. x  - C-. 
F(x) = ^ = £ J- - p^ ^ + c5 = pF(-^ ) + q. 

(55) 

1    2  1    1  2    "       "2 

Equations (28) also check with (29) but since those equations are 

only approximate, the agreement is, of course, only approximate. The 

interested mader may verify this by using numerical examples. 

The distributions discussed above are all based on the motion of 

a particle confined to an interval. The constraints given in (2)  assure 

that the particle never leaves that interval.  One other case merits 

mention here, viz. that of a particle moving on the positive real axis. 

Although the results are well known, they are included here in the 

interest of completeness.  To achieve unrectricted motion to the right, 

the constraints become 

c1 = 0, 

c2 > 1, 

o < c < 1. 

W 

Then x "* C x  with probability  p and  x -• C x  with proability  q. 

The initial point,  x-., cannot be taken as zero for then the particle 

would never leave the origin. 

For small  n, determination of F  is the same as before. 
n 

Repeated application of (21) yields an equation involving only FQ 

at  2  arguments and then it remains but to check each argument 

relative to  x_. 
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For n large, another method is available. First rewrite the 

expression for x  as follows 

= x , + (C., - l)x .,  with probability p n-1    2     n-1      r J r 
x 

= x  ., + (C, - l)x  ,  with probability q. n-1    3     n-1      r J T 

Then 
x  - x  n  (0,-1)  with probability  p n   n-1 _     2. r        J     r 

x  1     ^z 
- l^  with probability  q. 

If  5  is the random variable that takes on the two values, 

(C  - 1)  and  (C, - 1)  with probabilities  p and q  respectively, 

we have 

n x. - x. . 
v  i   i-l 

n 

i=l   i-l     i=l 

The first and second moments of 5  are 

m = E(5) = pC^ + qC  - 1 

E(52) = pCC^ - 2C2 + 1) + q(C2 - 20^ + l) 

=  j>C'2   +   qC     -  2(pC2   +   qC   )   +   1 

o2   =  E(?2)   -   (E(?))2  =  pq(C0  - C5)2. 

(55) 

(56) 

The right side of (55)  is just the sum of  n  independent, 

identically distributed random variables.  Using standard techniques 
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from the central limit theorem, the log-normal distribution for x 

(n large)  is easily achieved. 

F„(x) = Prfx„ < x) «s 

,   x    -(In — - nm)2A 2 1    n  x„e     x„      'ana 

Tänn J t 
dt, (37) 

where m and o are given by (56) 
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h.     Moments. 

The moments for the distributions of particle positions in the 

random walk treated here are easily derivable in exact form.  The 

distribution functions do not appear in the derivation nor do the 

combinations of constraints. The only constraints are those given 

by (2). 

In order to study the moment problem, it is convenient to cast 

the problem differently.  Let 

x = (C, + C_x  n)e  + C.x  ,(1-9 ) 
n    1    2 n-1  n    5 n-1     n 

where the random variable  9.  is given by 

9. 
i 

= 1  with probability  p 

= 0 with probability  q. 

Then 

x = u + v x , n   n   n n-1 

where 

u = Cn9 n   In 

v = C^Q     + C,(l - 9 ). 
n   2 n    5     n 

(58) 

(59) 

(40) 

(kl) 

It is convenient to introduce a table of moments for the 

and v's.  Equations (39) and (4l) give 

E(un)   = pC1 

E(vn)   = pC2 + qC5 = K 

E(u v ) = pC C, 
n n   ^12 

E(u2)   = pc2 

E(vn)   = PC2 + qC5 = K2 * 

us 

(42) 
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Now repeated application of (58) yields an expression for x 

in terms of  u's, v'u, and  x-. 

x  = u  + v x  n n   n   n n-1 

= u  +v(u  ,+v  nx  .) n   n n-1    n-1 n-2 

n-1 
. 1 

J^l n-1 

= u +S(u  . , >, v ,,) + x_ i _ v  „. n  , ,  n-j k=0  n-k    0 *=0  n—K 
.1=1    J 

(45) 

Applying (^2) to (kj)   gives for the mean of  x , 
n 

E(x ) = E(u ) + n      n 

n-1 i=i n-1 

S E(u  .) ' '  E(v  , ) + xn  '  E(v .) 
n-j k=0   n-k    0 *=0   n-* 

■1_ . n-1 n-1       .      -rr 
= E(u ) + E(u ) T,   (E(v.))J + x_  '  E(v  J 

n      n •_!   J      0 ^=0   n—6 

n-1 . 
= pC  + pC 2 KJ + x K

n 

3=1 

= p^i(1 + K(iTrSy)) + xoKn 

r   (1 - Kn)     „n 
= pCi ir^K) + xoK • 

CH) 

To find the second moment, we first square the right side of (45) 

and then apply (kZ ) . 

n-1     ^ i^1 
2   2   rr r     M      ^2   2 ||   2 x =u +L^(u   ''v .;] +x_!'v  «+ n   n        .  .,      n-j k=0  n-k      0 *=0 n—& 

n-1 jri n-1 

2{u E  (u   ' '  v , ) + xnu  'I  v  , + 
n. ,   n-j k=0  n-k    0 n £=0 n—? 

TT M 
0 1=0     n-* . ,   n-n k=0  n-k 

0=1     d 

(^5) 
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The expectations of the individual terms are 

E(u^)   =  pC^   , 

n-1 ft 

4=1      n-j k=0    n-k v    JJ2} 

n-1  n-1 II 
iz1 

II 
■i_l   ^_n      n_J   ""^   k=0     n-k f11110     n-m 

pcfK.(i - «r1* + 
2
P

C
'

C
 "^ 

12 
(1  - K2) 

1^2    S  K^(l   -  K""
1
"

1
), 

1  - K i=l 

n-1 

E[xollo  \-l]   =  X0K2   ' 

(46) 

n-1 Jbl 
E{2u    E     (u      .   'I      v     J)   =  2(pC1)

2C0   (l/~ K 

n.   T        n-j   k=0     n-k r 1       2        (1  - 
>1 

(1  - K":1) 
K) 

n-1 

Ef2x0Un lio Vn-e}   =  2x0pClC2K 
n-1 

n-1       . 
TT 

jzl (K n-1  ^-1) 

E{2X0 llo ^-Z^   (Vd k'o Vn-k)} = 2X0PC1C2K2    (K - K^)     ' 

Collecting terms, 

2   (1  -  K") (pC1)
2C2     (1   -  K^"1) 

E(xn) = P
C
I (T-riT) + 2 -JI-TK) 

L (i - K ) 
2 n 

(^  -   K2> 
x0K2  +  2x0pC1C2   (K _  K  )   • 

KCK""
1
 - K"

-1
) 

(K - K2) 
U?) 
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Higher moments are  derivable  in exactly   the  same way as    E(x ) 
2 

and K(x ) but no purpoce is served in dwellinc further on those 

moments. 

The moments for the limiting distributions may be obtained 

immediately from (kk)  and Ct?).  If x is the random variable 

denoting position after an infinite number of steps, 

PC, 
E(x) 1 - K 

2 
2    pCl E(x^) = K ■(1 

2pC, (48) 

o2 = E(x2) - (E(x)) 
2   PqCfU - C^)

2 

(1 - K)2(l - K ) 

The moments derived here provide a check for at least one of the 

distributions derived in Section 3•  When p = C  and  q = C , 

equation (27) gives 

s F(x) = ^x 

(49) 

C   „ 5 
E(x) = c  J    Xdx 

^1 
2C. 
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Equation (48) gives for E(x), 

E(x) 2   2 

c
2
ci  ci 

2C2C5 - 2C5 

Similarly, 

E(x2) = ^ r 3 x2dx = -^ 
1 o        5Ct 

From (48) 

B(x':) = 
PC 2c: 

1 - C| - a3 
(1 + 2C C 

2 3 

PC 

3C C 
-^ 2 3 

2 (C2 + V 

(50) 

(51) 

(52) 

5C 
5 

This work on the derivation of moments for distributions of 

particle positions in the random walk treated here was done simul- 

taneously with some work of J. B. Tysver on the same subject.  The 

results were obtained independently. 
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